CSCI E-92, Fall 2025: Principles of Operating Systems

Prof. James L. Frankel Harvard University

Version of 6:34 PM ET 23-Sep-2025 Copyright © 2025, 2024, 2022, 2021 James L. Frankel. All rights reserved.

Zoom

- You are encouraged to turn on your video feed
 - This allows the course staff to better determine if students seem puzzled and/or have questions
- Class and section meetings are recorded
 - Students who are unable to attend a meeting for any reason are able to view recordings later
 - It's still better to participate in the live session so that questions can be asked and answered
 - Many students find that reviewing material later to fully appreciate the details presented during class – even if they participated in the live class – is very helpful

First Class Meeting on 9/2/2025

- Our class website is located at URL: https://cscie92.dce.harvard.edu/fall2025/
 - The slides that I use in each class are available at https://cscie92.dce.harvard.edu/fall2025/index.html#onlinedocs-slides

- Please participate in the live stream and ask questions verbally using Zoom available in Canvas (https://canvas.harvard.edu/courses/164146) under the Zoom menu
- In addition, questions may be asked textually using Zoom's Chat facility

Staff Introductions

- Professor
 - James "Jamie" Frankel
- Teaching Assistant
 - Stephen Benjamin

Quick Polls

- Class Enrollment (Multiple Choice)
- Class Participation
- Section Participation
- Class Expectations (Multiple Choice)

You can choose to answer the polls anonymously

Student Introductions

- Please tell us a little about yourself
 - Where you're located
 - What you do when you're not at Harvard
 - Your technical background
 - Your out-of-work/school hobbies

Tour of Class Web Site

- At the top there are alerts
- Links for streaming and videos
- Info about midterm exam, prerequisites, overview, bibliography, instructors and section, Ed Discussion wiki/forum, Say Hello!, your location, git & GitHub, grading, accessibility, plagiarizing, publishing course materials, outline/approximate schedule, hardware-related information, agenda for the upcoming class, slides used in class, questionnaire & problem sets, assorted links, papers discussed in class, link to the section home page

Meeting Times

- Section meets on Tuesdays in Room LO1, 53 Church Street, Harvard Square, Cambridge, Massachusetts from 6:45 PM to 7:45 PM Eastern Time (ET) and in Zoom using the Section: HELIX Classroom room
 - This is immediately before class meets
- Class meets on Tuesdays in Room L01, 53 Church Street, Harvard Square, Cambridge, Massachusetts from 8:00 PM to 10:15 PM Eastern Time (ET) and in Zoom using the Class: HELIX Classroom room
 - Elongated class meeting time
- I will attempt to include a break during the class meeting (but no guarantee because of scope of material to be presented)

Section

- Very important (and required)
 - Discusses concepts & issues that are not covered in class
 - Often gives a sketch of algorithms and approaches to be used in solving the problem sets
 - Adds enrichment on topics discussed in class/lecture
 - Great forum for a more interactive dialog
 - Is live streamed and also recorded

Syllabus Review

- Questions?
 - Questions are always welcomed
 - Any questions now?
 - If there is limited time to answer questions, I'll let you know
- Review of Syllabus
 - Midterm exam
 - Prerequisites
 - Overview
 - Required and optional books
 - The daily agenda (these slides) and all slides used in class
- Order book, if you have not already done so
 - Modern Operating Systems, 5/e by Tanenbaum & Bos
 - The 4/e is also acceptable
 - Somewhat limited online access is available to all of our books through our Library Reserves link in Canvas
 - All of our books (except for those concerning Git) are currently available for online access

Required Readings

 Refer to the Approximate Schedule section of the course website for required readings to be completed before each class meeting

Say Hello!, Student Locations, Harvard Key, Using cscie92.dce.harvard.edu

- Submit a video in Canvas under Discussions as a reply to my "Say Hello!" topic
- Please post your primary location using Student Locations facility in Canvas
- Ensure that your Harvard Key is established
- Ensure that you are able to VPN into Harvard using vpn.harvard.edu and Cisco AnyConnect/Secure Client
- Ensure that you have an account on our cscie92.dce.harvard.edu AWS instance
 - Once your VPN connection is established, login to cscie92.dce.harvard.edu using SSH/SFTP (SecureCRT & SecureFX) with your HarvardKey NetID as your login name and your HarvardKey password as your password
 - If you are unable to login to cscie92.dce.harvard.edu, you may need to synchronize your HarvardKey password by using a browser to visit https://key.harvard.edu/manage-account and then clicking on "Synchronize Password >" and following the instructions on the next screen

g.harvard.edu e-mail Address

- If you're interested, you can get a g.harvard.edu account that will give you an e-mail address and access to Google Apps for Harvard
 - Get started at http://g.harvard.edu/
 - Note: Please be aware that when you claim your g.harvard account that g.harvard will become your primary Harvard e-mail address. All official communication from Harvard will be sent to your new g.harvard address and your g.harvard account will become your HarvardKey login name.

Class Discussion Group: Ed Discussion

- Ask all non-personal questions in Ed so the whole class can benefit from the answers
 - Ed can be found in Canvas by following the Ed Discussion link (https://canvas.harvard.edu/courses/164146/external_tools/115899?display=borderless)
 - Students are welcome to answer questions there, too
 - Personal questions should be sent to the course staff via e-mail
 - If general, all three course staff members should be included in e-mails to allow the fastest reply
 - All registered students should already be in our Ed group

NXP ARM K70 Hardware

- Show class the hardware
 - Students should order the NXP TWR-K70F120M hardware now
 - If available, the TWR-K70F120M-KIT includes the TWR-K70F120M (which includes TWR-K70F120M, TWR-SER, TWR-ELEV).
 - Sold by Mouser, Digi-Key, Newark, Arrow, Verical, Future, Avnet, ebay, etc.
 - Purchasing the TWR-K70F120M may be difficult or impossible
 - In addition to NXP/Freescale board, order the Adafruit USB to TTL Serial Cable Debug / Console Cable for Raspberry Pi, P/N 954
 - Available from adafruit.com https://www.adafruit.com/product/954 and also from Amazon
 - If needed, order necessary cables or adapters
 - Order microSDHC card(s) for exclusive use during this class
 - https://cscie92.dce.harvard.edu/fall2025/index.html#hwrefs-microsdhccard
 - If needed, order an SD card reader for your usual computer
 - Possible static dissipative devices: mat, strap, ground point
- For any interested students in the US (or elsewhere) who are unable to procure the TWR-K70F120M, we will lend you that board for the semester
 - The NXP TWR-K70F120M is in short supply
 - All borrowed hardware must be returned at the end of the semester.

NXP ARM TWR-K70F120M Hardware

- Any students interested in borrowing the TWR-K70F120M for the duration of the semester should send e-mail to all course staff
 - Include your name and full mailing address
 - Include your phone number
 - Include a statement that you will "return the NXP TWR-K70F120M board at the conclusion of the semester"

 Keep in mind that you are still responsible for purchasing all the other necessary hardware

Problem Set and Term Project Overview

- Problem Set 0: the course questionnaire, fix-this-program & word-count
- Problem Set 1: textbook problems & simple shell including conversion of microseconds since the Unix epoch to printable form
- Problem Set 2: memory management: malloc & free, K70 LED flashing program, shell enhancements
- Problem Set 3: textbook problems & device independent I/O for LEDs, pushbuttons, and a FAT32 file system on microSDHC, shell enhancements, must use UART serial input & output for all shell interactions
- Problem Set 4: K70 enhancements: faster clock, off-chip SDRAM, supervisor calls, serial I/O added to device independent I/O, (optional LCD display), A-to-D input, and touch sensors, unprivileged mode, shell enhancements
- Term Project Proposal for term project features
- Problem Set 5: FlexTimer for time and date, interrupt-driven serial I/O, user timer, shell enhancements
- Problem Set 6: SysTick for multiprocessing, processes
- Term Project Presentation: Advanced OS features as approved for each student

Problem Set 0

- Complete Problem Set 0
 - Establish a GitHub account
 - Install git as described on the section web site (https://cscie92.dce.harvard.edu/fall2025/section/index.html)
 - Modify the course questionnaire with your personal answers
 - Fix warnings and errors in fix-this-program on the cscie92 instance
 - Write the word count program
 - Create a branch named "problem-set-0", create a merge request, add the appropriate comment
- Due this coming Sunday night, September 7th, 2025 at midnight ET

Problem Set 1

- Present Problem Set 1
 - Due at midnight ET on Sunday night, September 21st, 2025
- Presentation of Problem Set 1 is delayed to next week

Lying to Students

• I will lie to you this semester

Lying to Students

- I will lie to you this semester
 - There are too many details to give the whole truth
 - That is the only way we can make reasonable progress through the material
- By the end of the semester, all lies will be fully corrected

Non-academic Class Activities

- Encourage a student community
- If interested, students are welcome to gather with us after each class for dinner in Harvard Square
 - Opportunity for students to socialize in an informal setting outside of class
 - Discussion/conversation/sharing after class
 - Need not be class related

- Ski trip during the winter (usually between the Fall and Spring semesters)
- Sailing trip(s) during the summer

Class Break

• Let's take a 5 minute break

I have the textbooks and hardware available in class

 You're welcome informally interact during the break (whether you're here in person or remotely)

New Material for this Week

- Cover new slides
 - Review of the C Programming Language through the Associativity (§7.2.1)
 slide #15

Second Class Meeting on 9/9/2025

Second Class Meeting Agenda

- Questions and Comments
- Class Website & Canvas, Zoom links
- Administrivia
 - K70 Hardware
 - Midterm Fxam
 - Student actions: Order textbook(s), Say Hello!, Student Locations
- Problem Set 1
- Review of the C Programming Language (continued)
- Devices, Abstractions Provided, OS Structure
- Processes

Questions or Comments

- From section immediately before class tonight
- Last week's section
- Last week's class
- Problem Set 0
- Access to the class cscie92.dce.harvard.edu instance & other logistics
- Readings
- Anything else

Class Website, Canvas, Zoom Links

- Our class website is located at URL: https://cscie92.dce.harvard.edu/fall2025/
 - The slides that I use in each class are available at https://cscie92.dce.harvard.edu/fall2025/index.html#onlinedocs-slides

- Please participate in the live stream and ask questions verbally using Zoom available in Canvas (https://canvas.harvard.edu/courses/164146) under the Zoom menu
- In addition, questions may be asked textually using Zoom's Chat facility

NXP ARM K70 Hardware

- NXP ARM K70 Hardware
 - All students should have already ordered the NXP TWR-K70F120M hardware
 - If available, the TWR-K70F120M-KIT includes the TWR-K70F120M (which includes TWR-K70F120M, TWR-SER, TWR-ELEV).
 - Sold by Mouser, Digi-Key, Newark, Arrow, Verical, Future, Avnet, ebay, etc.
 - Purchasing either the TWR-K70F120M or the TWR-K70F120M-KIT may be difficult or impossible, but see below
 - Now is the time to order the remaining required hardware
 - (1) In addition to NXP/Freescale board, order the Adafruit USB to TTL Serial Cable Debug / Console Cable for Raspberry Pi, P/N 954
 - Available from adafruit.com https://www.adafruit.com/product/954 and also from Amazon
 - The Adafruit USB to TTL Serial Cable is terminated with a USB Standard-A plug
 - If needed, order necessary cables or adapters
 - (2) Cable from USB mini-B J13 on the TWR-K70F120M to an appropriate USB connector for your development environment (probably USB Standard-A or USB-C)
 - (3) A powered USB hub
 - Example: SABRENT HB-UMP3 4-Port USB 3.0 Hub with Individual LED Lit Power Switches, Includes 5V/2.5A Power Adapter; connects to computer via USB-A
 - (4) Order at least a couple microSDHC card(s) for exclusive use during this class and an SD adapter
 - https://cscie92.dce.harvard.edu/fall2025/index.html#hwrefs-microsdhccard
 - (5) If needed, order an SD card reader for your usual computer
 - Examples:
 - (a) Anker USB-C SD Card Reader, 2-in-1 USB-C Memory Card Reader with Dual Slot for SDXC, SDHC, SD, MMC, RS-MMC, Micro SDXC, Micro SDHC Card, and UHS-I Cards
 - (b) Anker USB-A 3.0 SD Card Reader, 2-in-1 SD Card Reader for SDXC, SDHC, MMC, RS-MMC, Micro SDXC, Micro SD, Micro SDHC, UHS-I Cards
 - (c) Cable Matters 202058-BLK USB-A 3.0 to microSD, SD, SDHC & SDXC Card Reader
 - (d) Apple USB-C to SD Card Reader
 - (6) Possible static dissipative devices: mat, strap, ground point
 - See class website at Static dissipative devices used in the lab
 - (7) If developing on an Apple M-Series Mac (processor is an M1, M2, or M3), then a Segger J-Link EDU Mini is also required and a Windows VM
 - See https://shop-us.segger.com/product/j-link-edu-mini-8-08-91/ and https://www.adafruit.com/product/3571
- For any interested students in the US (or elsewhere) who are unable to procure the TWR-K70F120M, we will lend you that board for the semester
 - The NXP TWR-K70F120M is in short supply
 - All borrowed hardware must be returned at the end of the semester

NXP ARM TWR-K70F120M Hardware

- Any students interested in borrowing the TWR-K70F120M for the duration of the semester should send e-mail to all course staff ASAP
 - Include your name and full mailing address
 - Include your phone number
 - Include a statement that you will "return the NXP TWR-K70F120M board at the conclusion of the semester"
- If you are attending class in person, you must pick up the board during class
- Keep in mind that you are still responsible for purchasing all the other necessary hardware

Midterm Exam

- Our midterm exam will be available starting at 8:00 PM ET on October 21, 2025
 - The exam must be started within 24 hours of the date & time above
 - The exam is three hours in length
 - The exam will be administered under Proctorio
- Section will be held before class that evening, but that section meeting will not cover any material or answer any questions relevant to the midterm exam – in fairness to distance students who may be travelling to their proctored exam

Textbooks

- If not already done, order
 - Modern Operating Systems, Fifth Edition; Andrew S. Tanenbaum and Herbert Bos; Prentice-Hall, 2023, 2014, 2008; ISBN-13 978-0-13-761887-3
- Or, if the updated and preferred Fifth Edition is not accessible:
 - Modern Operating Systems, Fourth Edition; Andrew S. Tanenbaum and Herbert Bos; Prentice-Hall, 2015, 2008; ISBN-13 978-0-13-359162-0
- Recommended C Language Reference Manual:
 - <u>C: A Reference Manual, Fifth Edition</u>; Samuel P. Harbison and Guy L. Steele, Jr.; Prentice Hall, 2002; ISBN-13 978-0-13-089592-9

Say Hello!, Student Locations

 Submit a video in Canvas under Discussions as a reply to my "Say Hello!" topic

 Please post your primary location using Student Locations facility in Canvas

Problem Set 1

- Present Problem Set 1
 - Due at midnight ET on Sunday night, September 21st, 2025

Five Free Late Days

- Please don't use any of your five free late days early in the class
- Because the later problem sets are built upon earlier problem sets,
 the free late days are more valuable later in the semester
- Also, the larger problem sets are worth more points and take much more time to complete

Today's New Material

 Continue covering Review of the C Programming Language slides beginning with Associativity Examples slide #16

Cover Devices, Abstractions Provided, OS Structure slides

 Cover Processes slides through the Thread Usage (2) – Web Server slide #25

Third Class Meeting on 9/16/2025

Third Class Meeting Agenda

- Questions and Comments
- Administrivia
 - K70 Hardware Distributed During Break
 - Everyone needs to have ordered all necessary hardware by now!
 - Mandatory software development environment
 - Install CodeWarrior and build sample programs
- Problem Set Status
- Present the DataSizes, FlashLED, and Pushbuttons Projects
 - CodeWarrior Usage
 - Hardware Background
 - Interacting with the Hardware in C Code
- Introduction to details of the K70 Hardware and Low-Level Programming

Questions or Comments

- From section immediately before class tonight
- Last week's section
- Last week's class
- Problem Set 0 & 1
- Logistics
- Readings
- Anything else

NXP ARM K70 Hardware

- NXP ARM K70 Hardware
 - All students should have already ordered the NXP TWR-K70F120M hardware
 - Now is the time to order the remaining required hardware
 - (1) In addition to NXP/Freescale board, order the Adafruit USB to TTL Serial Cable Debug / Console Cable for Raspberry Pi, P/N 954
 - Available from adafruit.com https://www.adafruit.com/product/954 and also from Amazon
 - The Adafruit USB to TTL Serial Cable is terminated with a USB Standard-A plug
 - If needed, order necessary cables or adapters
 - (2) Cable from USB mini-B J13 on the TWR-K70F120M to an appropriate USB connector for your development environment (probably USB Standard-A or USB-C)
 - (3) A powered USB hub
 - Examples: SABRENT HB-UMP3 4-Port USB 3.0 Hub with Individual LED Lit Power Switches, Includes 5V/2.5A Power Adapter; connects to computer via USB-A
 - (4) Order at least a couple microSDHC card(s) for exclusive use during this class and an SD adapter
 - https://cscie92.dce.harvard.edu/fall2025/index.html#hwrefs-microsdhccard
 - (5) If needed, order an SD card reader for your usual computer
 - Examples:
 - (a) Anker USB-C SD Card Reader, 2-in-1 USB-C Memory Card Reader with Dual Slot for SDXC, SDHC, SD, MMC, RS-MMC, Micro SDXC, Micro SDHC Card, and UHS-L Cards
 - (b) Anker USB-A 3.0 SD Card Reader, 2-in-1 SD Card Reader for SDXC, SDHC, MMC, RS-MMC, Micro SDXC, Micro SDHC, UHS-I Cards
 - (c) Cable Matters 202058-BLK USB-A 3.0 to microSD, SD, SDHC & SDXC Card Reader
 - (d) Apple USB-C to SD Card Reader
 - (6) Possible static dissipative devices: mat, strap, ground point
 - See class website at Static dissipative devices used in the lab
 - (7) If developing on an Apple M-Series Mac (processor is an M1, M2, or M3), then a Segger J-Link EDU mini is also required and a Windows VM
 - See https://shop-us.segger.com/product/j-link-edu-mini-8-08-91/ and https://www.adafruit.com/product/3571
 - (8) NEW: A nicer ribbon cable solution is available for the Segger J-Link EDU mini from 1BitSquared
 - See <u>1BitSquared JTAG SWD 10pin to 20pin IDC Cable</u> on the class website

NXP TWR-K70F120M to be Mailed

- If you have requested to borrow the NXP TWR-K70F120M board and to have it mailed to you...
 - Please be certain that you have completed all of the requirements for me to send you a board
 - Include your name and full mailing address
 - Include your phone number
 - Include a statement that you will "return the NXP TWR-K70F120M board at the conclusion of the semester"
- Keep in mind that you are still responsible for purchasing all the other necessary hardware

K70 Software Development Environment

- We are now requiring all students to use CodeWarrior Version 11.1
- All students need either a Windows 10 or 11 native OS or a Windows 11 virtual machine
- The Segger J-Link EDU mini is not required, but it is strongly recommended
 - The Segger J-Link EDU mini is required with Apple Silicon M-Series Macintosh

Additional CodeWarrior Information

• When adding .c files to the Sources folder, it is fine to import the files either by selecting "Copy files" or "Link to files"

- When adding header files to the Project_Headers folder, always select "Copy files"
 - There seems to be a bug in CodeWarrior that doesn't allow it to access header files through a link (not sure if this is still present in Version 11.1)

Install CodeWarrior, Build Sample Programs

- Before next week's class meeting
 - Install CodeWarrior
 - Install Device Drivers
 - Connect Hardware Devices
 - Build Sample Programs Covered in Class Today

- Problem Set 1
 - Due this coming Sunday night, September 21st, 2025 at midnight ET

- Due at midnight ET on Sunday night, October 5th, 2025
- Three questions about memory management and page replacement
- Implement your own malloc & free replacements
- Additional shell commands: malloc, free, memorymap, memset & memchk
- Convert your shell to use your malloc & free
- On the NXP K70 ARM, implement LED flash program with pushbutton debouncing
- Implementation of malloc & free is significantly more work than PS1
 - Start early and test your implementation
 - At the end of PS2, you will be using your implementation of malloc & free rather than the system functions
- Present an overview of Problem Set 2

Hardware Precautions, Serial Adapter Need, J-Link EDU

- Be careful with static electric charges
- Be careful with the USB connector on the TWR-K70F120M and keeping the hardware equipment from falling
- Remember to order Adafruit 954 Serial to USB adapter not needed yet
- J-Link EDU mini is a better debug probe to use with our hardware, but is not required
- Everyone: static dissipative devices are helpful

Creating a CodeWarrior Project and Running It on the K70

- Quite a few different hardware configurations
 - Use the straight-forward configuration (i.e., no Tower Elevators for now even if you have them)
 - I'll be using the Segger J-Link EDU mini, but using OSJTAG is also possible
- Follow the directions on how to connect the hardware components together
- Follow these directions on how to install CodeWarrior
- Follow these directions on how to build a new project using CodeWarrior
- Follow these directions on how to run a project under CodeWarrior
 - Don't install any software updates to CodeWarrior

Hardware is Pretty Cool!

• I hope you're excited to be using raw hardware!

Get Hardware Working before Next Week's Class Meeting

- For next week,
 - Everyone should have installed CodeWarrior 11.1
 - Build and run the DataSizes, FlashLED, and Pushbuttons projects

Present C Code for K70 Hardware

- Present the DataSizes, FlashLED, and Pushbuttons Projects
 - CodeWarrior Usage
 - Hardware Background
 - Interacting with the Hardware in C Code

- Create a brand new project for DataSizes and explain all the code in DataSizes
- Present the FlashLED project and run it
- Present the Pushbuttons project and run it

Fourth Class Meeting on 9/23/2025

Fourth Class Meeting Agenda

- Questions and Comments
- Administrivia
- Review of Current Status
- Comments on Programming Solutions
- Basic Electronics
- Details of the K70 Hardware and Low-Level Programming
- Processes (continued)
- Memory Management

Questions or Comments

- Remaining questions from today's section meeting
- Previous section meetings
- Previous class meetings
- Problem Set 0, 1, or 2
- Readings
- Any other questions or issues

Administrivia

- In Ed, to enable e-mail notifications of all new threads...
 - Go to Account -> Settings (in the upper right)
 - Then, in the left menu, click on Notifications
 - Under New Thread Digests, turn on "Instant" for this course

Any Issues Getting Hardware Working?

- For today,
 - Everyone should have installed CodeWarrior 11.1
 - If you have the TWR-K70F120M, then you should have built and run the DataSizes, FlashLED, and Pushbuttons projects
 - Try building and running the InputAndOutput project
 - Reading Application Note 1 is crucial for understanding details about performing Console I/O on the K70 under CodeWarrior

Other Hardware Devices

- If you have the Primary and the Secondary Elevators and you have either or both the TWR-SER and the TWR-LCD-RGB board(s), then you should purchase the Segger J-Link EDU mini
 - This will allow you to power the entire Tower assembly through the elevators
 - If you have the TWR-SER board, you will be able to use the serial port on that board in addition to the serial port provided by the Adafruit 954
 - To use this additional serial port, you will need the Tripp-Lite Keyspan Serial Adapter and the serial cable

- Problem Set 1
 - Was due this past Sunday night, September 21st, 2025 at midnight ET

- Due at midnight ET on Sunday night, October 5th, 2025
- Three questions about memory management and page replacement
- Implement your own malloc & free replacements
- Additional shell commands: malloc, free, memorymap, memset & memchk
- Convert your shell to use your malloc & free
- On the NXP K70 ARM, implement LED flash program with pushbutton debouncing
- Implementation of malloc & free is significantly more work than PS1
 - Start early and test your implementation
 - At the end of PS2, you will be using your implementation of malloc & free rather than the system functions

- PS3 is the most time-consuming of any of the problem sets in this course
- Please complete PS2 on time so that you have as much time as possible for PS3

Comments on Programming Solutions (1 of 3)

- Document and comment your code
- Keep up to date with posts in Ed
- In addition to class, attend section and office hours, if possible
- All malloc'ed memory should be free'd
 - Memory for a command: free'd at end of command's execution
 - Memory for your shell/OS: explicitly free'd at end of the program's execution
- Use valgrind or a similar program to check for memory leaks and invalid memory accesses
- Check return codes from all functions/system call that you use
 - This includes malloc!
 - Refer to the man pages
 - Of course, check return codes from your functions, too

Comments on Programming Solutions (2 of 3)

- strcpy, etc. deal with NUL-terminated strings
- strncpy, etc. deal with maximum length NUL-terminated strings
- memcpy, etc. deal with length-counted memory
- malloc'ed memory is *not* initialized it may contain arbitrary values
 - Don't count on it being zero filled
 - Don't initialize all malloc'ed memory to zero unless absolutely necessary
 - That is a time-consuming operating
- Be extremely careful to avoid off-by-one errors that are very common
 - For example, if a buffer must be able to hold 256 chars and will be NULterminated, it must be 257 chars in size

Comments on Programming Solutions (3 of 3)

- As we move forward, the course Application Notes become important
 - At this point, only AN1, AN3, AN15, and AN16 are relevant
- Writing clear and efficient code matters
 - Don't repeatedly malloc, then malloc and copy, then free unless necessary
 - malloc and free are expensive operations
 - If the size can be relatively easily determined up front, that's a much better solution
- C has call-by-value semantics on parameters to functions
 - Pass a pointer to a parameter that a function needs to modify
 - Don't pass a pointer to a parameter if a function is only reading the parameter

Today's New Material: Basic Electronics

- Cover Basic Electronics slides
- Describe how pushbuttons work
 - Pull-up resistor
- Describe how LEDs work
 - Ohm's law
 - Current limiting resistor
- Extremely important: Exercise care with the USB connectors; They cannot take any force applied to them; If force is applied, they will break off the board in an irreparable way

Let's Start to Deal with the K70 ARM Hardware!

- A great deal of documentation
 - Manuals for our processor
 - ARM processor
 - ARM®v7-M Architecture Reference Manual
 - Cortex M4
 - Cortex M4 Technical Reference Manual
 - Our K70 chip
 - K70 Sub-Family Reference Manual
 - Schematics for our boards
 - TWR-K70F120M Quick Start Guide
 - TWR-K70F120M User Manual
 - TWR-K70F120M Schematics
- Software

Hardware Information on the Class Website

- Source code for examples
- Application Notes

• More...

Hardware Documentation

- Refer to the TWR-K70F120M Schematics
- Refer to the K70 Sub-Family Reference Manual

Continue to Present C Code for K70 Hardware

- Explain all the code in
 - FlashLED: main.c, delay.h, delay.c, led.h, led.c
 - Pushbuttons: main.c, pushbutton.h, pushbutton.c
 - InputAndOutput: main.c, util.h, util.c
 - Talk about our CSCI E-92 Application Notes in general and AN1 in specific
- Cover the references to the TWR-K70F120M Schematics
 - Page 9 of 11: determination of port and bit numbers for each LED
- Cover the references to the K70 Sub-Family Reference Manual

Today's New Material: Processes

- Continue covering Processes slides beginning with the Thread Usage
 - Dispatcher and Workers slide #26 through the unknown slide #
 - The Mutual Exclusion through Strict Alternation and Mutual Exclusion through Peterson's Solution slides were not covered in any depth

Today's New Material: Memory Management

Cover the Memory Management slides